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VARIABLE MATRIX SUBSTITUTION IN ALGEBRAIC
CRYPTOGRAPHY

JACK LEVINE, North Carolina State College

1. Introduction. The use of algebraic methods in cryptography is well-known
through two important papers by Hill [1], [2]. Briefly, the basic idea can be
formulated in the following way. Consider the system of simultaneous congru-
ences

(1.1) i = 2 au%; (mod 26), im1,...,m,
=1

where the constants ay; are chosen so that the determinant |au| is prime to 26.

By means of (1.1) the set of n variables (x1, - -+, %) is transformed to the

set (a1, - + +, ¥s) and, conversely, the set (v, - - -, ys) will be transformed to

the unique set (x1, * + *, x») by means of the inverse transformation which
exists by the assumption on |ay|.

To each of the 26 letters of the alphabet we associate an integer from the set
0,1, ---, 25, so that no two letters correspond to the same integer. For sim-
plicity we illustrate with the correspondence (used throughout this paper)

ABCDETFGHOTI JELMNOTP QRSTUVWXZY2
(1.2) 1 23456 7 8 910111321314151617 18192021 22232425 0

Now to encipher a message, or plain text, by means of (1.1), first replace
each letter of the text by means of its numerical equivalent, using for illustra-
tion, (1.2). Then divide the resulting sequence of numbers into groups contain-
ing # numbers each. Call these

(1.3) F 23 ST 5™ Paperc P ot PaPisc c cPim v
Each group of (1.3) is then used in (1.1) for x; - + - x,, and the transformed set
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3  * - ys calculated. Call the sequence of these sets
(1.4) Ci1€12* * *Cia  Cpalaz " * *Cm *** Ciaig* * *Cgn * ° * »

Convert the numbers of (1.4) into their letter equivalents by (1.2). These
letters will constitute the cipher text corresponding to the given plain text.

The decipherment is accomplished by means of the inverse to (1.1).

As a concrete example, select =3, and (1.1) as

y1 = %+ 2xs + 323
(1.5) ' y1 = 22 + Sx3 + 625
=2+ 223+ a3

To encipher the text CRYPTOGRAPHIC, divide into sets of three letters, add-
ing, say, xX to complete the last set:

¢C R Y P T O G R A P HI C X X
3 18 25 16 20 15 7 18 1 16 8 9 3 24 24

The sequence (1.3) is here 3 18 25 16 20 15 - - - . Substitute the first set 3 18 25
(=pupupu) in (1.5) for xpxsxs to give
y1®m34+364+ 75=114 =10 =,
yrm 6+ 90+ 150 = 246 = 12 = 1,
y3=3+364+100=139m 9=,
Here the first cipher sequence cuciscis of (1.4) is 10 12 9, which converted to

letters by (1.2) gives JLI as shown.
The complete encipherment proceeds as above, and produces

JLI WNL TFU GVP SJQ
To decipher, obtain the inverse of (1.5),
1= 8y 4+ 24y: -+ 23y,
(1.6) 3= 24+ s
x3 m 25y; +
(The congruences are of course taken mod 26, in which 25= —1, 24 = -2, ¢/c.)

The reciprocal of a prime p, mod 26, is ¢, where pg=1 mod 26.
Now using jL1=10 12 9 as yygys in (1.6) gives

% = 8042884 207 =575m 3 =c¢
xgm 2404 12 =252= 18 =R
%3 = 250 + 9=29=2=%¥

or CRY, the first plain-text group. The rest of the plain text is found in like man-
ner. (In actual practice we would use —1 for 25, —2 for 24, elc., in (1.6).)
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In Hill's papers the transformation (1.1) is generalized by the use of matrix
coefficients, but the above is sufficient for our purpose.

(The author notes in passing that simultaneous equations were used by him
for cryptographic purposes to a limited extent several years prior to the appear-
ance of Hill's papers.)

2. Fixed substitution, The cryptographic method represented by (1.1) is
known as a fixed substitution system. This means that any given plain-text group
will always be replaced by the same cipher-text group. This is true because the
coefficients a4 remain fixed throughout the encipherment of a message.

From a cryptographic point of view there is a distinct advantage in using a
variable substitution method, whereby the various appearances of a given plain-
text group will be replaced by different cipher groups. It is our purpose to indi-
cate some simple ways to accomplish this based on (1.1).

3. Variable substitution, first method. It is convenient to represent (1.1) as
a matrix congruence

3.1 Cm AP (mod 26),
where matrices 4, C, P are defined by

on " c O ?1 a
P L AP L R
Gnl * * °* Gp p

7
and P, C are one-column matrices representing corresponding plain- and cipher-
text groups.
Now in classical cryptography several variable substitution methods are
well-known. These can be represented by the congruences

(3.3) ci = p; + k; (mod 26), i=1,--+,N,

where p; is the numerical value of the ith plain-text letter according to some
correspondence as (1.2), ¢, is the numerical value of the corresponding cipher-
text letter, NV is number of letters in the message, and the sequence of numbers
kiks - - - has one of the following properties:

(a) kiks - -+ is a periodic sequence, say Fkiks -+ c Bukika c - Bpky s ¢ ¢,
where the numbers &, - - - ka of the period are selected in any preassigned man-
ner.

(b) The number &; is chosen by the relation

(3.4) Ryws oy
80
(3.5) 6= Pit cem1 (co chosen in advance).

(¢) The number & is chosen by the relation
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(3.6) ki = piy,
80
3.7 = pi+ piar (po chosen in advance).

Note that in each of the above three methods p¢ is uniquely determined in
the decipherment process. This is, of course, a prime requisite in any crypto-
graphic system.

In matrix form (3.3) can be written as
(3.8) C=P+K

where the indicated matrices are each of one row and one column, since (3.3)
represents encipherment one letter at a time.

Now to obtain a variable substitution analogous to (3.1) we generalize (3.8)
to

3.9 C = AP+ BK (mod 26),
where 4 = [65;], B= [b;] are nXn matrices with fixed elements (and [ 4| prime
to 26). Matrices C and P are as given in (3.2), and K is a one-column matrix,
by
-l
3
Corresponding to the three cases (a), (b), (¢) above for choosing the &, we

have:
(a’) Define matrices

¢ pa ka
(3.10) Ce=1-1, Pi=)- | Kim| - |},
c.a [.’a. B
using (1.3), (1.4), and
(3.11) Ki = Kim, i=1,2,000,
where K, - - - , K, are chosen in any preassigned manner.
Then
(3.12) C: = AP;+ BK,, im1,2,-.,
from (3.9) gives the substitution. Also,
(3.13) Pi= A7C; — A™'BK,.

(b") In this case we choose K;= Cy_y, 80
Ci= AP+ BC,y  (Co chosen in advance).
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(¢’) Choose K;=P;_,, s0
(3.14) Cim AP; 4+ BP¢, {Po chosen in advance).

To obtain involutory transformations (in which a transformation and its
inverse are identical) we have from (3.12), (3.13),

(3.15) A=At B=—A"'B=— 4B,
and (3.13) becomes P¢=4 C;4BK;. A solution of (3.15) is
A*=1, B=A—1 (I = identity matrix).
To obtain A such that A?=1, a formula in [2] may be used,

(3.16) oy méy—7Ad;, orm2(mod26), om 3 M:(mod 26),
1

¢ must be prime to 26.
We illustrate case (c’) using

123 411 1
A=1256|, B=|203{, Py=12],
124 [ 120 3

3.17) c2|l=|1256 Pt +120 3 Pi~1
Cis 124] Lpand 120J Lpi,

cu] 123 Pt ] 411 P11

To encipher CRYPTOGRAPHIC, we have

Ffen] 1237 1737 (4117 [1 19 s
as|=]|256 18{41203 2{=|2|=|w|,
lcisd L124] L25] L120] L3 14 N
Fen] [1237 161 4117 [3Y [ 07 [2]
cn|=|256 20|47203 18| =|17] = ||,
Lesd L1240 LIS1 L120J L2S 25 R'd
el (1231 7] 4117 161 [15] [o]
c2|=1256 18]1+1203 20|=} S)=}xl], de
lcaad L1243 L IJ 1 2 0J L1651 -ZSJ Ly

The complete encipherment is SWN 2QY OEY BMG VQW, using CXX as the last

plain group.
The decipherment can be obtained from the inverse to (3.17),
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8 24 23 1 24 24
P; = 24 1 0 C; + 6 2 25 P&-l.
2 0 1 3 25 1

4, Varlable substitution, second method. We return to the basic relation
(3.1) and attempt to replace the matrix A of fixed elements by a matrix with
variable elements. A general situation is obtained if the elements a;; of 4 be
considered as polynomial functions of a set of parameters ¢, #, v, - - - insuch a
way that the determinant IAI of A is independent of the parameiers and is a
prime number mod 26. The inverse 4=? of 4 will then exist for all parameter
values, and hence P =A4~1C can always be found. We consider one of the simpler
cases here.

Any triangular matrix

ty 0 ---0
Tm sy daa v - - -
‘ul t”’...['.

with 2;(2, u, v - - - ), (£5£5), such that ¢; is a prime mod 26 will have for deter-
minant | T| =yl - * * Las, a prime mod 26, If T be transformed by elementary
transformations leaving | T'| unchanged we can obtain a general matrix 4 of
the desired property.

For example, using

1 0 0 0
¢80 0, | 7| =1, mod 26,
2A4+12 5 O
1 $ t+1 7
we can transform T to
1 1 ¢ t2:
] i+ 3 ) 2

A() = , | A@)] =1, moed 26.

24+1 2t4+3 280 +t+5 2+
1 t+1 2t+1 247

Place C=A(t)P. For each P =0P; give { a value k; determined in some pre-
assigned manner,

(4-1) Ci= A(k()P‘, P = A"(k.‘)Cg.
Any of the methods (a’), (b"), (¢’) can be used, taking for example,

ks = coru,1 OX Bi = Pyy,1, OF Bs = Po 1,1+ Pias, ele.,
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in the latter two cases.

One disadvantage of this procedure to obtain A(¢) is that the elements of
A-1(¢) will in general be high degree polynomials in the parameters, thus causing
computational difficulties.

One way to avoid this difficulty is to assume A4 (¢) is linear in £ and impose the
condition that 4-1(¢) is likewise. Thus, place

(42) A(‘) =G+ ‘H»

with G, H constant element matrices, and | G| a prime mod 26. It is easily shown
A-'(¢) will be linear in ¢ if H=XG, X*=0. Then

(4.3) A7) = G — G X.
To obtain a general matrix X satisfying X2=0, define N by

[0
00
0 ne
00
(4.4) No . , ¢S [nr2.
'0 e
0o

i "0,
N consisting of all zeros except my, ns, « - « , n, placed immediately to the right

of the main diagonal terms in alternate rows as shown. The n, are arbitrary con-
stants. It is evident that N2=0. X is now defined by

(4.5) X =QNQ™,

Q being an arbitrary constant-term matrix with an inverse. From (4.5), X*=0.
From (4.2) we then define A(¢) by

(4.6) A(t) = G+ tXG = G+ QNQ~'G
A~(t) being given by (4.3).
Example. Take
010 17 6 12
N={0 0 0f, @g=] 6 13 24},
0 00 12 24 23
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(4.8)

C|=

C=

C;ﬂ

C4=
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24 13 18 m25 2 167
Xe=110 0 144, G=] 2 25 10|(=G"Y,
120 0 2 L16 10 3
-4 7 22 -4 13 167
XG=] 6 4 20, G X=| 4 0 16/,
[ 12 8§ 14 .24 0 18]
25 2 167 "4 7 227
A@ =] 2 25 10|+¢ 6 4 20},
16 10 3. 12 8 14
25 2 167 T 4 13 167
A-Y{) =1 2 25 10}—1¢1 4 O 16].
.16 10 3. 24 0 18]
Using these in (4.1) gives
(25 + 4k; 24 Tk 16 4 22k;]
Ci=| 2+ Ok 254 4k 104 20% )P,
| 16 + 12k, 10 4 8k; 3 4- 14k,
~25 + 22k, 2 4 13k 16 + 1047
P;=| 24 22k 25 10 4 104 | C:.
|16 4+ 2k 10 3+ 8k
Take ki=pi1atpic1a+ D13, (B1=1), and encipher CRYPTOGRAPHIC(XX),
3 9 127 [ 37 r 3 el
8 3 4 18| ={22{=|v|, k=34+18+25m20,
L 2 18 170 L25 L 14 Lal
1 12 147 [167 [247 [T
18 1 20 20 = |10 =]y}, k= 164 204 15 =25,
122 14 231 L15] 15 | 0]
21 21 207 [ 77 7257 Y]
22 21 16 18l=}{ 2|=(8], &=74+1841=0,
L4 2 150 L I_J L 14 Lal
(25 2 167 1167 [147 [N
2 25 10 8 = |10|=]7|, Ay=164+849=7,
116 10 34 L 9. | 25 LY.
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1 25 141173 3 c
Cs=|18 1 20 24| =]12 L.
22 14 23 2 18

The cipher-text is thus ¢vA XJO YBA NJY CLR,
To decipher, use (4.8),

21 1S 3 3 c
Py = [24 25 20 [ZZ:I =|18|= [R:,, ele.
18 10 11 1 25 Y.

[March

There is an advantage in using an involutory transformation (4.1), f.e., one

such that 4 (¢) =A4-1(t). To obtain this we require from (4.3), (4.6),

4.9 G =G, XG = - GX.
Define matrix J by
T -
0 -1
1 7
0 -1
(4.10) - -J,
1,
0 -1
o1 .
b ) Gy

constants i, - - -, jg arbitrary, and @y, + « -, @, all =11, (r+2g=n).

Then by (4.4), (4.10),

(4.11) Jt=1, JN=-—=NJ
Place

(4.12) G=QJQ', X =(QNQ,
giving

Gt=1, XG=-GX, (X*=0),
satisfying (4.9).

From (4.12), XG=QNJQ-1= —QNQ = — X, since direct calculation shows

NJ=—N. Hence (4.6) gives



1958] VARIABLE MATRIX IN ALGEBRAIC CRYPTOGRAPHY 179

(4.13) A(Y) = G = iX = A71(2),
which can also be expressed as
(4.14) AQ@) = Q7 — iN)Qt = A-1(3).
Example. Use N, Q, X of the previous example, and
1 1 0
J=]10 -1 0]|.
0 0 -1
By (4.12), (4.13)
3 9 10 34+ 2 9413t 104
G=]6 19 2|, A@®=| 6-10¢ 19 24 12| = A3,
12 14 3 124 o 14 34+ 24

In case #=2 it can be verified that
a4 bt c+d¢]

AQ) = A7) =
@ =470 [e+ﬂ —(a+ b))

if a=bcd’*1, e= —=b%(d')*F2bd’, f=—b*d’, and b, ¢, d are arbitrary (d prime
mod 26), and dd' =1 mod 26.

The modulus 26 used throughout this paper is not essential. Other moduli
can be used with suitable modifications where necessary.
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